- tính giá trị của biểu thức A = x+y/z + x+z/y +y+z /x ,nếu 1/x + 1/y + 1/z=0
$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0$
$\Rightarrow \dfrac{1}{z}=-\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{-(x+y)}{xy}\\\Rightarrow \dfrac{x+y}{z}=\dfrac{-(x+y)^2}{xy}$
Tương tự $\dfrac{x+z}{y}=\dfrac{-(x+z)^2}{xz};\dfrac{y+z}{x}=\dfrac{-(y+z)^2}{yz}$
=>$A=\dfrac{-(x+y)^2}{xy}-\dfrac{(x+z)^2}{xz}-\dfrac{(y+z)^2}{yz}$
$=\dfrac{-z(x+y)^2-y(x+z)^2-x(y+z)^2}{xyz}$
$=\dfrac{-x^2z-xz^2-xyz-x^2y-xy^2-xyz-y^2z-yz^2-xyz-3xyz}{xyz}$
$=\dfrac{-xz(x+y+z)-xy(x+y+z)-yz(x+y+z)-3xyz}{xyz}$
$=\dfrac{-(x+y+z)(xy+yz+zx)-3xyz}{xyz}$
Mà $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\iff \dfrac{xy+yz+zx}{xyz}=0\iff xy+yz+zx=0$
=> $A=-3$