[tex]M = \frac{1}{5} + \left ( \frac{1}{5} \right )^2 + \left ( \frac{1}{5} \right )^3 + ... + \left ( \frac{1}{5} \right )^{50} \\ M = \frac{1}{5} + \frac{1}{5^2} + \frac{1}{5^3} + ... + \frac{1}{5^{50}} \\ 5M = 5\left ( \frac{1}{5} + \frac{1}{5^2} + \frac{1}{5^3} + ... + \frac{1}{5^{50}} \right ) \\ 5M = 1 + \frac{1}{5} + \frac{1}{5^2} + ... + \frac{1}{5^{49}} \\ 5M - M = \left ( 1 + \frac{1}{5} + \frac{1}{5^2} + ... + \frac{1}{5^{49}} \right ) - \left ( \frac{1}{5} + \frac{1}{5^2} + \frac{1}{5^3} + ... + \frac{1}{5^{50}} \right ) \\ 4M = 1 - \frac{1}{5^{50}} < 1 \\\Rightarrow M < \frac{1}{4}[/tex]