$\mathrm{\int \dfrac{dx}{(2 + 3x + x^2)^2} = \int \dfrac{(x+2)-(x+1)dx}{[(x+2)(x+1)]^2} = \int \dfrac{dx}{(x+2)(x+1)^2} - \int \dfrac{dx}{(x+2)^2(x+1)}}$
Xét $\mathrm{I_1 = \int \dfrac{dx}{(x+2)(x+1)^2} = \int \dfrac{d(x+1)}{(x+1)^2} - \int \dfrac{d(x+1)}{x+1} + \int \dfrac{d(x+2)}{x+2}}$
$\mathrm{= \dfrac{-1}{x+1} -ln|(x+1)| + ln\mid (x+2)\mid + C}$
Xét $\mathrm{I_2 = \int \dfrac{dx}{(x+2)^2(x+1)} = \int \dfrac{d(x+1)}{x+1} - \int \dfrac{d(x+2)}{x+2} - \int \dfrac{d(x+2)}{(x+2)^2} } $
$= ln|x+1| - ln\mid x+2\mid + \dfrac{1}{x+2}+ C $
$ I = I_1 - I_2 = ....$