\[\begin{array}{l}
\sqrt 3 \sin 2x + \cos 2x = 2\cos x - 1\\
\Leftrightarrow 2\sqrt 3 \sin x\cos x + 2{\cos ^2}x - 2\cos x = 0\\
\Leftrightarrow \cos x\left( {\sqrt 3 \sin x + \cos x - 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\cos x = 0\\
\sqrt 3 \sin x + \cos x - 1 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{2} + k\pi \\
\cos \left( {x - \frac{\pi }{3}} \right) = \frac{1}{2} = \cos \frac{\pi }{3}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{2} + k\pi \\
x = \frac{{2\pi }}{3} + k2\pi \\
x = k2\pi
\end{array} \right.\left( {k \in \mathbb{Z}} \right)\\
\end{array}\]