1)a/
{ vtAB.vtAC = AB.AC.cosA = 7.5.cos120o = - 35/2
{ vtAB.vtBC = vtAB.(vtBA + vtAC) = - AB^2 + vtAB.vtAC = - 49 - 35/2 = - 113/2
{ vtAC.vtBC = vtAC.(vtBA + vtAC) = - vtAB.vtAC + AC^2 = 35/2 + 25 = 85/2
b/
{ vtBC = vtBA + vtAC => BC^2 = (vtBA + vtAC)^2 = AB^2 + AC^2 + 2vtBA.vtAC = AB^2 + AC^2 - 2vtAB.vtAC = 49 + 25 - 2(-35/2) = 109 => BC = V109
{ vtAM = vtAB + vtBM = vtAB + (1/2).vtBC => AM^2 = AB^2 + BC^2/4 + 2vtAB.(1/2)vtBC = AB^2 + BC^2/4 + vtAB.vtBC = 49 + 109/4 - 113/2 = 79/4 => AM = V79/2
2)a/ Gọi M(x;0) =>
{ vtMA = {x - 2; - 5} => MA^2 = (x - 2)^2 + (-5)^2 = x^2 - 4x + 29
{ vtMB = {x - 4; - 3} => MB^2 = (x - 4)^2 + (-3)^2 = x^2 - 8x + 25
Tg MAB cân tại M <=> MA^2 = MB^2 <=> x^2 - 4x + 29 = x^2 - 8x + 25 <=> 4x = - 4 => x = - 1
=> M(- 1;0)
b/ Gọi C(x;y)
{ vtCA = {x - 2;y - 5} => CA^2 = (x - 2)^2 + (y - 5)^2 = x^2 - 4x + y^2 - 10y + 29
{ vtCB = {x - 4;y - 3} => CB^2 = (x - 4)^2 + (y - 3)^2 = x^2 - 8x + y^2 - 6y + 25
tg ABC cân tại C <=> CA^2 = CB^2 <=> x^2 - 4x + y^2 - 10y + 29 = x^2 - 8x + y^2 - 6y + 25 <=> 4x - 4y = - 4 <=> y = x + 1 (1)
^ACB = 90o <=> vtCA.vtCB = 0 <=> (x - 2)(x - 4) + (y - 5)(y - 3) = 0 <=> x^2 - 6x + y^2 - 8y + 23 = 0 (2)
Thay (1) vào (2): x^2 - 6x + (x + 1)^2 - 8(x + 1) + 23 = 0 <=> x^2 - 6x + 8 = 0 => x = 2; x = 4 => y = 3; y = 5
Vậy có 2 điểm C thỏa bài toán: C1(2;3); C2(4;5)