[tex]\sum \sqrt{\frac{xy}{x+y+2z}}\leqslant \sum \sqrt{\frac{xy}{\sqrt{xy}+\sqrt{yz}+\sqrt{xz}+z}}=\sum \sqrt{\frac{xy}{(\sqrt{z}+\sqrt{x})(\sqrt{z}+\sqrt{y})}}\leqslant \frac{1}{2}\left (\frac{\sqrt{xy}}{\sqrt{x}+\sqrt{z}}+\frac{\sqrt{xy}}{\sqrt{y}+\sqrt{z}} \right )+\frac{1}{2}\left (\frac{\sqrt{yz}}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{zy}}{\sqrt{x}+\sqrt{z}} \right )+\frac{1}{2}\left (\frac{\sqrt{xz}}{\sqrt{y}+\sqrt{z}}+\frac{\sqrt{xz}}{\sqrt{y}+\sqrt{x}} \right )=\frac{1}{2}\left ( \sqrt{y}+\sqrt{z}+\sqrt{x} \right )=\frac{2013}{2}[/tex]
câu bất
[tex]\left\{\begin{matrix} (x^2-y)(1+xy)=1-xy & \\ (x^2-y)^2=1-xy & \end{matrix}\right. \\ =>(x^2-y)^2=(x^2-y)(1+xy) \\ =>x^2=y \vee x^2-y=1+xy \\ <=>(x-1)(x+1)-y(1+x)=0 \\ <=>(x+1)(x-1-y)=0[/tex]
thay zô tự xử nha bạn
câu hệ