giúp em câu 5 mấy best ơi
View attachment 45300
$4a^{2}+2ab+2ac+bc=a^{2}+ac+ab+(a^{2}+ab)+(a^{2}+ac)+(a^{2}+2bc)$
$\geq a^{2}+ac+ab+2a\sqrt{ab}+2a\sqrt{ac}+2a\sqrt{cb}$ (BĐT AM-GM)
$\Leftrightarrow (2a+b)(2a+c)\geq (a+\sqrt{ac}+\sqrt{ab})^{2}$
$\Rightarrow \sqrt{(2a+b)(2a+c)}\geq a+\sqrt{ac}+\sqrt{ab}$
$VT=\sum \frac{a}{\sqrt{2a^{2}+4a+bc}}$
$=\sum \frac{a}{\sqrt{2a^{2}+(a+b+c)2a+bc}}$
$=\sum \frac{a}{\sqrt{4a^{2}+2ab+2ac+bc}}$
$=\sum \frac{a}{\sqrt{(2a+b)(2a+c)}}$
$\leq\sum \frac{a}{a+\sqrt{ac}+\sqrt{ab}}$
$=\sum \frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1$
Đẳng thức xảy ra...