Lim ((1-sin(pi/2*cosx))/sin(tanx))
X tiến đến 0
Xin cảm ơn ^-^
[tex]\lim_{x\rightarrow 0}\frac{1-sin(\frac{\pi }{2}cosx)}{sin(tanx)}=\lim_{x\rightarrow 0}\frac{1-cos(\frac{\pi }{2}-\frac{\pi }{2}cosx)}{sin(tanx)}=\lim_{x\rightarrow 0}\frac{1-(1-2sin^{2}(\frac{\frac{\pi }{2}-\frac{\pi }{2}cosx}{2}))}{sin(tanx)}=\lim_{x\rightarrow 0}\frac{2sin^{2}(\frac{\pi }{4}-\frac{\pi }{4}cosx)}{sin(tanx)}[/tex]
lưu ý công thức:
nếu [tex]u\rightarrow 0 \Rightarrow \lim_{u\rightarrow 0}\frac{sinu}{u}=1[/tex]
vậy nên. Bài này tương đương với
[tex]\lim_{x\rightarrow 0}\frac{2.(\frac{sin(\frac{\pi }{4}-\frac{\pi }{4}cosx)}{\frac{\pi }{4}-\frac{\pi }{4}cosx})^{2}}{\frac{sin(tanx)}{tanx}}.\frac{tanx}{(\frac{\pi }{4}-\frac{\pi }{4}cosx)^{2}}=2\lim_{x\rightarrow 0}\frac{tanx}{(\frac{\pi }{4}-\frac{\pi }{4}cosx)^{2}}=2\lim_{x\rightarrow 0}\frac{tanx}{(\frac{\pi }{4})^{2}.2sin^{2}\frac{x}{2}}= (\frac{4}{\pi })^{2}.\lim_{x\rightarrow 0}\frac{tanx}{sin^{2}\frac{x}{2}}=0[/tex]