Cho [tex]\frac{-3}{2}\leq x\leq \frac{3}{2},x\neq 0,a=\sqrt{3+2x}-\sqrt{3-2x}.[/tex] Tính [tex]G=\frac{\sqrt{6+2\sqrt{9-4x^2}}}{x}[/tex] theo a.
Mình cảm ơn.
[tex]a=\sqrt{3+2x}-\sqrt{3-2x}.[/tex]
[tex]\Rightarrow[/tex] [tex]a^2=(\sqrt{3+2x}-\sqrt{3-2x}.)^2=3+2x+3-2x-2\sqrt{(3+2x)(3-2x)}=6-2\sqrt{9-4x^2}[/tex]
[tex]\Rightarrow[/tex] [tex]2\sqrt{9-4x^2}=6-a^2[/tex] (1)
Và [tex]9-4x^2=(3-\frac{a^2}{2})^2\Leftrightarrow 4x^2=9-(3-\frac{a^2}{2})^2=\frac{a^2}{2}(6-\frac{a^2}{2})\Leftrightarrow x^2=\frac{a^2}{4}(3-\frac{a^2}{4})\Rightarrow x=\frac{a\sqrt{12-a^2}}{4}[/tex] hoặc [TEX]x=-\frac{a\sqrt{12-a^2}}{4}[/TEX] (2)
Từ (1) và (2) [tex]\Rightarrow[/tex][tex]G=\frac{\sqrt{6+2\sqrt{9-4x^2}}}{x}[/tex][tex]=\frac{4\sqrt{12-a^2}}{a\sqrt{12-a^2}}=\frac{4}{a}[/tex]
hoặc [tex]G=-\frac{4\sqrt{12-a^2}}{a\sqrt{12-a^2}}=-\frac{4}{a}[/tex]