lam gium tui voi!!

C

cuccuong

Cho a,b,c>0CMR
[TEX]\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq\frac{3}{a+2b}+\frac{3}{b+2c}+\frac{3}{c+2a}[/TEX]
Giai gium nha ! Cam on truoc:);)
do a,b,c>0
Áp dụng bất đẳng thức [TEX](\frac{1}{x}+\frac{1}{y}+\frac{1}{z})(x+y+z) \ge\ 9[/TEX](với x,y,z>0)
\Rightarrow [TEX]\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \ge\ \frac{9}{x+y+z}[/TEX],ta có :
[TEX]\frac{1}{a}[/TEX]+[TEX]\frac{1}{a}[/TEX]+[TEX]\frac{1}{b}[/TEX] [TEX]\ge\[/TEX] [TEX]\frac{9}{2a+b}[/TEX](1)
[TEX]\frac{1}{b}[/TEX]+[TEX]\frac{1}{b}[/TEX]+[TEX]\frac{1}{c}[/TEX] [TEX]\ge\[/TEX] [TEX]\frac{9}{2b+c}[/TEX](2)
[TEX]\frac{1}{c}[/TEX]+[TEX]\frac{1}{c}[/TEX]+[TEX]\frac{1}{a}[/TEX] [TEX]\ge\[/TEX] [TEX]\frac{9}{2c+a}[/TEX](3)
Từ (1),(2),(3) \Rightarrow[TEX]3(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) \ge\ 9(\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a})[/TEX]
\Rightarrow [TEX]\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\3(\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a})[/TEX]
 
Last edited by a moderator:
Top Bottom