Cho x+y+z =12. Tim GTNN cua: x/can(y) + y/can(z) + z/can(x)
Đăt $( \sqrt{x};\sqrt{y};\sqrt{z})=(a;b;c)$
Bài toán trở thành
Cho $a^2+b^2+c^2=12$ Min $P=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}$
Xét $(a^2+b^2+c^2)(a+b+c)=12(a+b+c)=a^2b+b^2c+c^2a+(a^3+ab^2)+(b^3+bc^2)+(c^3+ca^2)\geq 3(a^2b+b^2a+c^2a)$
$\Leftrightarrow 4(a+b+c)\geq a^2b+b^2c+c^2a$
$P=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}=\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\geq \frac{(a^2+b^2+c^2)^2}{a^2b+b^2c+c^2a}$
$\geq \frac{(a^2+b^2+c^2)^2}{4(a+b+c)}\geq \frac{(a^2+b^2+c^2)^2}{4\sqrt{3(a^2+b^2+c^2)}}=6$