1)$A=\dfrac{(\sqrt{2}+\sqrt{3})^2(5-2\sqrt{6})^2\sqrt{(\sqrt{3}-\sqrt{2})^2}}{9\sqrt{3}-11\sqrt{2}}
\\A=\dfrac{(\sqrt{2}+\sqrt{3})(5-2\sqrt{6})^2(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}{9\sqrt{3}-11\sqrt{2}}
\\A=\dfrac{(\sqrt{2}+\sqrt{3})(5-2\sqrt{6})^2}{9\sqrt{3}-11\sqrt{2}}
\\A=\dfrac{(\sqrt{2}+\sqrt{3})(\sqrt{3}-\sqrt{2})^4}{9\sqrt{3}-11\sqrt{2}}
\\A=\dfrac{(\sqrt{3}-\sqrt{2})^3}{9\sqrt{3}-11\sqrt{2}}
\\=1$
2) ĐK: $x^2 \geq 1$.
$x^2-2\sqrt{x^2-1} \geq 0
\\x^2-1-2\sqrt{x^2-1}+1 \geq 0
\\(\sqrt{x^2-1}-1)^2 \geq 0$
Điều này hiển nhiên đúng.
Do đó ĐKXĐ: $x^2 \geq 1$.
Tách như trên ta có:
$B=\sqrt{(\sqrt{x^2-1}+1)^2}+\sqrt{(\sqrt{x^2-1}-1)^2}
\\=\sqrt{x^2-1}+1+\sqrt{x^2-1}-1
\\=2\sqrt{x^2-1}$
Do $|x| \geq \sqrt{2}$.