hsg toán 8

T

thlleninh

H

hiendang241

1/

ta có a+b+1=111...1(2n c/s 1)+4.111..1(n c/s1)+1
=11.....1(n c/s 1).$10^n$+5.1............11(n c/s 1)+1
đặt 11...1(n c/s 1)=a
ta có a.$10^n$+5a+1=a($10^n$-1)+6a+1
=a.9a+6a+1=9$a^2$+6a+1=$(3a+1)^2$

 
T

trinhminh18

2(tìm GTLN)/ ta có:
Q=$\dfrac{a^2-ab+b^2}{a^2+ab+b^2}$=
$\dfrac{3(a^2+ab+b^2)-2.a^2-4ab-2.b^2}{a^2+ab+b^2}$
=3-$\dfrac{2(a+b)^2}{a^2+ab+b^2}$ < hoặc =3
Dấu = xảy ra\Leftrightarrowa=-b
 
H

hiendang241

2/

GTLN
ta có $a^2$-ab+$b^2$=3($a^2$+ab+$b^2$)-2($a^2$+2ab+$b^2$)
\Rightarrow Q=3-$\frac{2(a+b)^2}{a^2+ab+b^2}$\leq 3
dấy = xảy ra khi a=-b;a,b#0
GTNN
ta có 2$(a-b)^2$\geq0\Rightarrow 2$a^2$-4ab+2$b^2$\geq0
\Rightarrow 2$a^2$-4ab+2$b^2$+$a^2$+ab+4b^2$\geq$a^2$+ab+$b^2$
\Rightarrow 3($a^2$-ab+$b^2$)\geq $a^2$+ab+$b^2$
\Rightarrow Q\geq $\frac{1}{3}$
dấu= xảy ra khi a=b;a'b#0
 
Top Bottom