ĐK: $x \ge 2$
Ta có:
$$2(x-4)\sqrt{x-2}+(x-2)\sqrt{x+1}+2(x-3)=0 \iff 2(x-4)(\sqrt{x-2}-1)+(x-2)(\sqrt{x+1}-2)+6(x-3)=0 \\\iff \dfrac{(2x-8)(x-3)}{\sqrt{x-2}+1}+\dfrac{(x-2)(x-3)}{\sqrt{x+1}+2}+6(x-3)=0 \\\iff (x-3)(\dfrac{2x-8}{\sqrt{x-2}+1}+ \dfrac{x-2}{\sqrt{x+1}+2} +6)=0 \\\iff \left\{\begin{matrix} x=3 \\ \dfrac{2x-8}{\sqrt{x-2}+1}+ \dfrac{x-2}{\sqrt{x+1}+2} +6 =0 \end{matrix}\right.$$
Lại có: $\dfrac{2x-8}{\sqrt{x-2}+1} \ge \dfrac{-4}{\sqrt{x-2}+1} \ge -4 \Rightarrow \dfrac{2x-8}{\sqrt{x-2}+1}+ \dfrac{x-2}{\sqrt{x+1}+2} +6 \ge -4+0+6 >0$
Suy ra phương trình có nghiệm duy nhất là $x=3$