Ta có:
[TEX]\frac{{{x^2}}}{2} + \frac{{{y^2}}}{3} + \frac{{{z^2}}}{4} = \frac{{{x^2} + {y^2} + {z^2}}}{5}[/TEX]
[TEX]\Rightarrow \frac{{30{x^2}}}{{60}} + \frac{{20{y^2}}}{{60}} + \frac{{15{z^2}}}{{60}} = \frac{{12({x^2} + {y^2} + {z^2})}}{{60}}[/TEX]
[TEX]\Rightarrow 30{x^2} + 20{y^2} + 15{z^2} = 12({x^2} + {y^2} + {z^2})[/TEX]
[TEX]\Rightarrow 30{x^2} + 20{y^2} + 15{z^2} - 12{x^2} - 12{y^2} - 12{z^2} = 0[/TEX]
[TEX]\Rightarrow 18{x^2} + 8{y^2} + 3{z^2} = 0[/TEX]
Mà [TEX]18{x^2};8{y^2};3{z^2} \ge 0 \Rightarrow x = y = z = 0[/TEX]