a) $AM \cdot AB = AH^2 = AN \cdot AC$
b) Từ a) suy ra $\triangle{AMN} \sim \triangle{ACB}$ (c-g-c), suy ra $\dfrac{S_{AMN}}{S_{ACB}} = (\dfrac{AM}{AC})^2 = \dfrac{AM}{AC} \cdot \dfrac{AN}{AB}$
Thay $AM = \dfrac{AH^2}{AB}$ và $AN = \dfrac{AH^2}{AC}$ ta suy ra $\dfrac{S_{AMN}}{S_{ACB}} = \dfrac{AH^2}{AB^2} \cdot \dfrac{AH^2}{AC^2} = \sin^2 B \cdot \sin^2 C$