hình học k gian

L

lonely_97

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

bài 1: cho tứ diện ABCD; M,N lần lượt thuộc AC, AD. MN k song song với CD. O ở trong tam giác BCD
A) BC \ Bigcap_ {} ^ {} (OMN)
B) BD \ Bigcap_ {} ^ {} (OMN)

bài 2: cho hình chóp S.ABCD đáy là tứ giác có các cặp cạnh đối k song song
M thuộc SD
A) SC \ Bigcap_ {} ^ {} (ABM)

bài 5: cho hình chóp S.ABCD đáy là hình bình hành (câu hỏi như trên bài 2 )
 
N

nguyenbahiep1

bài 1: cho tứ diện ABCD; M,N lần lượt thuộc AC, AD. MN k song song với CD. O ở trong tam giác BCD
A)[TEX] BC \cap (OMN)[/TEX]
B) [TEX]BD \cap (OMN)[/TEX]







Giải

MN cắt CD tại H

kéo HO cắt BD và BC tại Q và K cũng là giao của BD và BC với (OMN)


 
N

nguyenbahiep1

bài 2: cho hình chóp S.ABCD đáy là tứ giác có các cặp cạnh đối k song song
M thuộc SD
A) [TEX]SC \cap (ABM)[/TEX]



Giải

AB cắt DC tại H

HM cắt SC tại K

K là giao điểm cần tìm


 
N

nguyenbahiep1

bài 5: cho hình chóp S.ABCD đáy là hình bình hành (câu hỏi như trên bài 2 )

Kẻ đường thẳng qua M và // với DC cắt SC tại H chính là giao điểm cần tìm
 
S

sam_chuoi

Umbala

1. Trong (ACD) MN giao CD tại P suy ra P thuộc (OMN). Trong (BCD) OP giao BC tại Q và BD tại I suy ra Q và I thuộc (OMN). Mà Q thuộc BC và I thuộc BD nên BC giao (OMN) tại Q và BD giao (OMN) tại I. 2. Trong (ABCD) AB giao CD tại E suy ra E thuộc (ABM). Trong (SCD) ME giao SC tại F. Ta có F thuộc ME nên thuộc (ABM) và F thuộc SC nên SC giao (ABM) tại F. 3. Ta có AB//CD, AB thuộc (ABM), CD thuộc (SCD), M thuộc (ABM) và (SCD). Suy ra giao tuyến của (ABM) và (SCD) là đt Mx//CD. Đt Mx giao SC tại N suy ra N là điểm cần tìm.
 
Top Bottom