a/bạn tự c/m
b/bạn xét tam giác đồng dạng .
c/bạn có thể tham khảo ở đây
bài toán
Từ 1 điểm M ở bên ngoài đường tròn (O) vẽ hai tiếp tuyến MA và MB(A,B là các tiếp điểm). Trên cung nhỏ AB lấy 1 điểm C. Vẽ CD vuông góc với AB, CE vuông góc với MA, CF vuông góc với MB.Gọi I là giao điểm của AC và DE;K là giao điểm của BC và DF.Chứng mimh rằng
a)Tứ giác AECD;BFCD nội tiếp
b)CD^2=CE.DF
c)Tứ giác ICKD nội tiếp
d)IK//AB
Câu 1. Dễ thấy AECD và BFCD nội tiếp (Bạn tự chứng minh).
Câu 2. Ta sẽ chứng minh tgCED và tgCDF đồng dạng.
Thật vậy:
Vì MA, MB là các tiếp tuyến của (O) nên ^MAB = ^MBA (1)
Mà ^ECD + ^MAB = 180; ^DCF + ^MBA = 180 (các góc đối của tứ giác nội tiếp) nên ^ECD = ^DCF (*)
Có ^EDC = ^CAE (hai góc nội tiếp cùng chắn mộ cung - trong đường tròn ngoại tiếp AECD)
^CAE = ^ABC (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cùng chắn cung - đtròn O)
^ABC = ^DFC (hai góc nội tiếp cùng chắn mộ cung - trong đường tròn ngoại tiếp BFCD)
=> ^ECD = ^DFC (**)
(*) (**) => tgCED và tgCDF đồng dạng.
=> CE/CD = CD/CF => CD^2 = CE.CF.
(CD^2 không thể bằng DE.DF vì trong các tam giác DEC, DCF thì DE, DF là lớn nhất, lớn hơn CE, CF (do các cạnh đó đối diện với góc tù trong tam giác - bạn tự suy nghĩ xem tại sao các góc ECD, FCD là góc tù nhe!) nên DE.DF > CE.CF!)
Câu 3. Trong tam giác vuông DCB có ^ABC + ^DCB = 90 mà ^EDC = ^ABC (cm câu 2)
=> ^EDC + ^DCK = 90
Chứng minh tương tự ta cũng có ^CDK + ^DCI = 90
=> ^EDC + ^DCK + ^CDK + ^DCI = 180 hay ^IDK + ^ICK = 180 => DICK nội tiếp.
Câu 4.Có ^EDC + ^DCK = 90 (cm câu 3)
mà ^DIK = ^DCK (Hai góc nội tiếp cùng chắn cung - trong đường tròn ngoại tiếp DICK)
=> ^EDC +^ DIK = 90 => ^IHD = 90 (H là giao điểm của IK và CD)
=> IK vuông góc CD => IK // AB (vì AB cũng vuông góc với CD).