Hinh Hoc 9 Khó

Z

zzhanamjchjzz

Last edited by a moderator:
C

congchuaanhsang

a, AH, BM, CD đồng quy nên theo định lí Xê-va ta có:

$\dfrac{AD}{BD}.\dfrac{BH}{CH}.\dfrac{CM}{AM}$=1

Mà CM=AM\Rightarrow$\dfrac{AD}{BD}.\dfrac{BH}{CH}$=1 \Leftrightarrow $\dfrac{BD}{AD}=\dfrac{BH}{CH}$

Mà CD là phân giác $\hat{BCA}$\Rightarrow$\dfrac{BD}{AD}$=$\dfrac{BC}{CA}$

\Rightarrow$\dfrac{BC}{AC}$=$\dfrac{BH}{CH}$

b, Từ câu a suy ra DH//AC

$\dfrac{AC}{BC}$=$\dfrac{AD}{BD}$=$\dfrac{CH}{BH}$=$\dfrac{CH}{AC}$

\RightarrowBH=AC\Rightarrow$BH^2=BC.CH$ \Leftrightarrow $BH^2=BC(BC-BH)$\Leftrightarrow$BH^2+BH.BC=BC^2$

\Leftrightarrow$( \dfrac{BH}{BC} )^2+\dfrac{BH}{BC}-1=0$

\Rightarrow$\dfrac{BH}{BC}$=$\dfrac{\sqrt{5}-1}{2}$

\Leftrightarrow$\dfrac{AC}{BC}$=$\dfrac{\sqrt{5}-1}{2}$

Đến đây áp dụng Pytago tính được $\dfrac{AB}{AC}$

 
Top Bottom