Cho tam giác ABC có góc B lớn hơn góc C và tia phân giác AD. Chứng minh rằng góc ADC lớn hơn góc ADB và góc ADC trừ góc ADB bằng góc B trừ góc C
C/m:[tex]\widehat{ADB}<\widehat{ADC}[/tex]
-Ta có: [tex]\left\{\begin{matrix} \widehat{ADB}=\widehat{DAC}+\widehat{C} & \\ \widehat{ADC}=\widehat{DAB}+\widehat{B} & \end{matrix}\right.(góc ngoài)[/tex]
-MÀ:[tex]\left\{\begin{matrix} \widehat{DAB}=\widehat{DAC}(AD là tia pg của \widehat{BAC}) & \\ \widehat{B}>\widehat{C} & \end{matrix}\right.[/tex]
-Vậy: [tex]\widehat{ADB}<\widehat{ADC}(đpcm)[/tex]
[tex]C/m: \widehat{ADC}-\widehat{ADB}=\widehat{B}-\widehat{C}[/tex]
[tex]\widehat{ADC}-\widehat{ADB}[/tex]
[tex]\Leftrightarrow (\widehat{DAB}+\widehat{B})-(\widehat{DAC}-\widehat{C})[/tex]
[tex]\Leftrightarrow \widehat{DAB}+\widehat{B}-\widehat{DAC}-\widehat{C}[/tex]
[tex]\Leftrightarrow \widehat{B}-\widehat{C}[/tex]
[tex]\Rightarrow \widehat{ADC}-\widehat{ADB}=\widehat{B}-\widehat{C}(đpcm)[/tex]