Ta sẽ chứng minh $\widehat{EBM}=180^{\circ}$
$ABCD$ là hình bình hành $\Rightarrow AB=CD,AD=BC,\widehat{BAD}=\widehat{BCD}$
Ta có:
$AB=CD;MC=CD\Rightarrow AB=MC$
$AD=BC;AE=AD\Rightarrow AE=BC$
$\widehat{EAB}+\widehat{BAD}=180^{\circ}$ (kề bù)
$\widehat{BCM}+\widehat{BCD}=180^{\circ}$ (kề bù)
mà $\widehat{BAD}=\widehat{BCD}$ nên suy ra $\widehat{EAB}=\widehat{BCM}$
Xét $\triangle EAB$ và $\triangle BCM$ ta có:
$AB=MC$
$AE=BC$
$\widehat{EAB}=\widehat{BCM}$
Suy ra $\triangle EAB=\triangle BCM(c.g.c)\Rightarrow \widehat{AEB}=\widehat{CBM}(1)$
Ta cũng có:
$\widehat{EAB}+\widehat{BAD}=180^{\circ}$ (kề bù)
$\widehat{BAD}+\widehat{ABC}=180^{\circ}$ (do $ABCD$ là hình bình hành)
Suy ra $\widehat{EAB}=\widehat{ABC}(2)$
Từ $(1),(2)$ suy ra
$\widehat{EBM}=\widehat{EBA}+\widehat{ABC}+\widehat{CBM}=\widehat{EBA}+\widehat{BAE}+\widehat{AEB}=180^{\circ}$ hay $E,B,M$ thẳng hàng.