Cho [tex]\Delta ABC[/tex], chứng minh [tex]sin\frac{A}{2}.sin\frac{B}{2}.sin\frac{C}{2}\leq \frac{1}{8}[/tex]
Kẻ phân giác $AD$, $BH\perp AD$, $CK\perp AD$.
Đặt $BC=a; AC=b; AB=c$.
$\triangle ABH$ vuông tại $H\Rightarrow \sin BAH =\dfrac{BH}{AB}$.
$\triangle ACK$ vuông tại $K\Rightarrow \sin CAK=\dfrac{CK}{AC}$.
Mà $\widehat{BAH}=\widehat{CAK}=\dfrac{\widehat A}2$
$\Rightarrow \sin \dfrac A2=\dfrac{BH}{AB}=\dfrac{CK}{AC}=\dfrac{BH+CK}{AB+AC}\le \dfrac a{b+c}$.
cmtt: $\sin \dfrac B2\le \dfrac b{c+a}; \ \sin \dfrac C2\le \dfrac c{a+b}$.
$\Rightarrow \sin \dfrac A2.\sin \dfrac B2.\sin \dfrac C2\le \dfrac{abc}{(a+b)(b+c)(c+a)}\le \dfrac{abc}{2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}}=\dfrac 18$ (đpcm)