Bài 1:
+ Ta có : $\widehat{A}= 2 \widehat{B}= 2. 2. \widehat{C}= 4 \widehat{C}$
+ $\triangle ABC$ có $\widehat{A}+\widehat{B}+\widehat{C}=180^o $
Hay $ 4 \widehat{C}+2 \widehat{C} +\widehat{C}= 7 \widehat{C}= 180^o$
$\Longrightarrow \widehat{C}= 25 \dfrac{5}{7} ^o$
Thay vảo $\widehat{A}=4 \widehat{C}; \widehat{B}=2 \widehat{C} $ ta có $\widehat{A}=102 \dfrac{6}{7} ^o; \widehat{B}=51 \dfrac{3}{7} ^o$
Bài 2:
+ Ta có $\widehat{B}- \widehat{C}=18^o \Longrightarrow \widehat{B} = 18^o+\widehat{C}$
+ Ta có $\widehat{A}- \widehat{B}=18^o \Longrightarrow \widehat{A} = 18^o+\widehat{B}= 18^o+18^o+\widehat{C}=36^o+ \widehat{C}$
+ $\triangle ABC$ có $\widehat{A}+\widehat{B}+\widehat{C}=180^o $
Hay $36^o+ \widehat{C}+18^o+\widehat{C}+\widehat{C}=180^o \Longrightarrow 3. \widehat{C}= 126^o \Longrightarrow \widehat{C}= 42^o$
Thay vào $ \widehat{A} =36^o+ \widehat{C}= 36^o+42^o= 78^o$; $ \widehat{B} = 18^o+\widehat{C}= 42^o+18^o= 60^o$
Bài 3:
+ $\triangle ABC$ có $\widehat{A}+\widehat{B}+\widehat{C}=180^o $ (1)
$\Longrightarrow \widehat{B}+ \widehat{C}= 180^o- \widehat{A}$
+Theo bài ra ta có: $180^o- \widehat{A} = 3 \widehat{B} \Longrightarrow \widehat{B}+ \widehat{C} = 3 \widehat{B} $
$\Longrightarrow \widehat{C} = 2 \widehat{B} \Longrightarrow \widehat{B} = \dfrac{\widehat{C} }{2} $ (2)
+ Ta có $\widehat{C}=\dfrac{4}{3}\widehat{A} \Longrightarrow \widehat{A}= \dfrac{3}{4}\widehat{C}$ (3)
+ Thay vào (1) ta có
$\dfrac{3}{4}\widehat{C}+\dfrac{\widehat{C} }{2}+\widehat{C}=180^o \Longrightarrow 2\dfrac{1}{4} \widehat{C}=180^o \Longrightarrow \widehat{C}=80^o$
+ Thay vào (2); (3) ta sẽ có $ \widehat{A}= 60^o ; \widehat{B}=40^o$