View attachment 193167ai giúp em câu này với ạ
Đặt: $f(x)=(1+4x)^n=a_0+a_1x+a_2x^2+\ldots +a_nx^n$
$f(\dfrac{1}{4})=a_0+\dfrac{a_1}{4}+\dfrac{a_2}{4^2}+\ldots+\dfrac{a_n}{4^n}=2^n=4^8$
$\Rightarrow n=16$
Ta có: $a_k=4^kC_{16}^k$, $a_{k+1}=4^{k+1}C_{16}^{k+1}$
$\dfrac{a_k}{a_{k+1}} <1 \Leftrightarrow \dfrac{4^kC_{16}^k}{4^{k+1}C_{16}^{k+1}}<1\Leftrightarrow \dfrac{k+1}{4(16-k)}<1\Leftrightarrow k<\dfrac{63}{5}\Leftrightarrow k\leq 12$
Tương tự: $\dfrac{a_k}{a_{k+1}}>1\Leftrightarrow k\geq 13$
Vậy k=13