1.
$\triangle ABC \sim \triangle HBA \Rightarrow \dfrac{AB}{HB}=\dfrac{AC}{HA}=\dfrac{BC}{BA}=\dfrac{AB+AC+BC}{HB+HA+BA}=\dfrac{25}{15}=\dfrac{5}{3}$
$\Rightarrow AB=\dfrac{3}5BC$
Áp dụng định lí Pi-ta-go:
$AB^2+AC^2=BC^2\Leftrightarrow AC^2=BC^2-AB^2=BC^2-\dfrac{9}{25}BC^2=\dfrac{16}{25}BC^2$
$\Rightarrow AC=\dfrac{4}{5}BC$
$\triangle ABC \sim \triangle HAC \Rightarrow \dfrac{AB}{HA}=\dfrac{AC}{HC}=\dfrac{BC}{AC}=\dfrac{AB+AC+BC}{HA+HC+AC}$
$\Rightarrow \dfrac{5}{4}=\dfrac{25}{HA+HC+AC}\Rightarrow HA+HC+AC=20$
Vậy chu vi của $\triangle AHC$ là $20cm$.