Hệ thức lượng trong tam giác

L

lp_qt

$cosB+cosC$

$=\dfrac{a^{2}+c^{2}-b^{2}}{2ac}+\dfrac{b^{2}+a^{2}-c^{2}}{2ab}$

$=\dfrac{a^{2}b+c^{2}b-b^{3}+b^{2}c+a^{2}c-b^{3}}{2abc}$

$=\dfrac{(b+c)(a^{2}+bc-c^{2}-b^{2}+bc)}{2abc}$

$=\dfrac{(b+c).[a^{2}-(b-c)^{2}]}{2abc}$

$=\dfrac{(b+c).(a+b-c).(a+c-b)}{2abc}$

$\Longrightarrow \dfrac{b^{2}-c^{2}}{cosB+cosC}$

$=\dfrac{(b-c)(b+c).2abc}{(b+c).(a+b-c).(a+c-b)}$

$=\dfrac{2abc(b-c)}{(a+b-c).(a+c-b)}$

$\Longrightarrow VT=\dfrac{2abc(b-c)}{(a+b-c).(a+c-b)}+\dfrac{2abc(c-a)}{(a+b-c).(b+c-a)}+\dfrac{2abc(a-b)}{(a+c-b).(b+c-a)}$

$=\dfrac{2abc}{(a+b-c).(a+c-b).(b+c-a)}.[(b-c)(b+c-a)+(c-a)(b+c-b)+(a-b)(a+b-c)]$

$=0$
 
Top Bottom