Áp dụng định lý Ta-lét trong $\triangle{EDC}$ ta được
$\left\{ \begin{array}{l}
\dfrac{AE}{AD} = \dfrac{BE}{BC} \\
\dfrac{AB}{DC} = \dfrac{BE}{EC} \\
\end{array} \right.
\implies \left\{ \begin{array}{l}
\dfrac{AE}{BE} = \dfrac{AD}{BC} \\
\dfrac{AB}{BE} = \dfrac{DC}{EC} = \dfrac{AD}{EC} \\
\end{array} \right.
\implies \left\{ \begin{array}{l}
\dfrac{AE^2}{BE^2} = \dfrac{AD^2}{BC^2} \\
\dfrac{AB^2}{BE^2} = \dfrac{AD^2}{EC^2} \\
\end{array} \right.$
Cộng lại ta được
$\dfrac{AE^2+AB^2}{BE^2} = \dfrac{AD^2}{BC^2} + \dfrac{AD^2}{EC^2}$
Mà $AE^2 + AB^2 = BE^2 \iff \dfrac{AE^2+AB^2}{BE^2} = 1$
$\implies 1 = \dfrac{AD^2}{BC^2} + \dfrac{AD^2}{EC^2}$
$\iff \dfrac1{AD^2} = \dfrac1{BC^2} + \dfrac1{EC^2}$