Đặt [tex]\sqrt{x}=a;\sqrt{y}=b (a,b\geq 0)[/tex]
Ta có
[tex]\left\{\begin{matrix} a^2b+b^2a=30 & \\ a^3+b^3=35 & \end{matrix}\right.\Rightarrow \left\{\begin{matrix} 3a^2b+3b^2a=90 & \\ a^3+b^3=35 & \end{matrix}\right.\\\Rightarrow (a+b)^3=125\Rightarrow a+b=5[/tex]
Lại có
[tex]30=a^3+b^3=(a+b)(a^2-ab+b^2)=5[(a+b)^2-3ab]\\=5(5^2-3ab)=125-15ab\\\Rightarrow ab=6\Rightarrow \left\{\begin{matrix} a=2 & \\ b=3 & \end{matrix}\right.[/tex]
Suy ra x=4,y=9