hệ phương trình cần giải giúp

T

trinhvit

Last edited by a moderator:
Q

quynhsieunhan

1)$\left\{ \begin{array}{l} \sqrt{x + y} + \sqrt{y + x} = \frac{5}{2} \\ x^2 + y^2 + xy = 21 \end{array} \right.$
2) $\left\{ \begin{array}{l} x^2 + y^2 = 5 \\ \sqrt{y - 1}(x + y - 1) = (y - 2)\sqrt{x + y} \end{array} \right.$
1, $\left\{ \begin{array}{l} \sqrt{x + y} + \sqrt{y + x} = \frac{5}{2} \\ x^2 + y^2 + xy = 21 \end{array} \right.$
\Leftrightarrow $\left\{ \begin{array}{l} \sqrt{x + y} = \frac{5}{4} \\ (x + y)^2 - xy = 21 \end{array} \right.$
\Leftrightarrow $\left\{ \begin{array}{l} x + y = \frac{25}{16} \\ xy = \frac{-4751}{256} \end{array} \right.$

2, $\left\{ \begin{array}{l} x^2 + y^2 = 5 (1) \\ \sqrt{y - 1}(x + y - 1) = (y - 2)\sqrt{x + y} (2) \end{array} \right.$
Xét (2): $\sqrt{y - 1}(x + y - 1) = (y - 2)\sqrt{x + y}$
\Leftrightarrow $\sqrt{y - 1}(x + y) - \sqrt{y - 1} = \sqrt{x + y}(y - 1) - \sqrt{x + y}$
\Leftrightarrow $\sqrt{(y - 1)(x + y)}(\sqrt{x + y} - \sqrt{y - 1}) + (\sqrt{x + y} - \sqrt{y - 1}) = 0$
\Leftrightarrow $(\sqrt{x + y} - \sqrt{y - 1})(\sqrt{(x + y)(y - 1)} + 1) = 0$
\Rightarrow $\sqrt{x + y} = \sqrt{y - 1}$ \Leftrightarrow $x = -1$
thay vào (1) \Rightarrow $y = \pm 2$
 
Top Bottom