Toán 8 Hằng đẳng thức mở rộng

minhhoang_vip

Học sinh gương mẫu
Thành viên
16 Tháng năm 2009
1,074
773
309
27
Vũng Tàu
Bà Rịa - Vũng Tàu
ĐHBK HCM
+ [imath]x^4+y^4=(x^2)^2+(y^2)^2[/imath]
[imath]=(x^2+y^2)^2-2x^2y^2 \\ =[(x+y)^2-2xy]^2-2(xy)^2 \\ = (a^2-2b)^2-2b^2 \\ = ... \\ = a^4-4a^2b+2b^2[/imath]

+ [imath]x^6+y^6=(x^3)^2+(y^3)^2[/imath]
[imath]=(x^3+y^3)^2-2x^3y^3 \\ =[(x+y)^3-3xy(x+y)]^2-2(xy)^3 \\ = (a^3-3ab)^2-2b^3 \\ = ... \\ = a^6-6a^4b+9a^2b^2-2b^3[/imath]

+ [imath]x^7+y^7=(x^7 + x^4y^3) + (y^7+x^3y^4)-x^3y^4 - x^4y^3[/imath]
[imath]=x^4 (x^3+y^3) + y^4(x^3+y^3)-(xy)^3(x+y) \\ =(x^4+y^4)(x^3+y^3) -ab^3 \ (*)[/imath]
Lại có [imath]x^3+y^3=(x+y)^3-3xy(x+y)=a^3-3ab[/imath]
Nên [imath](*) =(a^4-4a^2b+2b^2)(a^3-3ab) -ab^3 \\ =... \\ =a^7 - 7 a^5 b + 14 a^3 b^2 - 7 a b^3[/imath]
 
Last edited:
  • Like
Reactions: Andrea Valerie
Top Bottom