ta có pthđgđ [TEX]x^3-3mx^2+x-3m^2=x+1[/TEX]
[TEX]\Leftrightarrow x^3-3mx^2-3m^2-1=0 [/TEX] (1) có 3 nghiệm pb
[TEX]y’=3x^2-6mx=0[/TEX]
[TEX]\Leftrightarrow
\left[\begin{matrix} x=0\\ x=2m\end{matrix}\right.
[/TEX]
để pt (1) có 3 nghiệm pb thì pt [TEX]y’=0[/TEX] có 2 nghiệm pb [TEX]\Leftrightarrow m\neq 0[/TEX]
và [TEX]y(0).y(2m)<0[/TEX]
[TEX]\Leftrightarrow -(3m^2+1)(-4m^3-3m^2-1)<0[/TEX]
[TEX]\Rightarrow (-4m^3-3m^2-1) > 0 [/TEX] (vì [TEX]-(3m^2+1) <0[/TEX])
[TEX]\Leftrightarrow m>-1[/TEX]
hay [TEX]m\in(-1;2020)[/TEX]
chọn D
có chỗ nào thắc mắc thì hỏi lại để được hỗ trợ b nha