46. $d(I, AB) = \dfrac{1}{\sqrt{2}}$
$S_{ABC} = 2 \implies AB = \dfrac{2S_{ABC}}{d(I, AB)} = 4\sqrt{2}$
Gọi $A(a,a)$, $B(b,b)$
$AB = 4\sqrt{2} \implies \sqrt{2(a-b)^2} = 4\sqrt{2} \implies a-b = \pm 4$
$C = 2I - B = (4 - b, 2 - b)$
$M = \dfrac12 (A + C) = \dfrac12 (4 + a - b, 2 + a - b) = \begin{cases} \dfrac12 (8, 6) \, , a-b=4 \, (N) \\ \dfrac12 (0, -2) \, , a-b = -4 \, (L) \end{cases} = (4, 3)$. Chọn D