[tex]\lim_{x \rightarrow 2}\frac{\sqrt[3]{3x-5}(\sqrt{2x-3}-1)+\sqrt[3]{3x-5}-1}{x-2}=\lim_{x \rightarrow 2}\frac{\sqrt[3]{3x-5}\frac{2(x-2)}{\sqrt{2x-3}+1}+\frac{3(x-2)}{\sqrt[3]{(3x-5)^2}+\sqrt[3]{3x-5}+1}}{x-2}=\lim_{x \rightarrow 2} \left ( \frac{2\sqrt[3]{3x-5}}{\sqrt{2x-3}+1}+\frac{3}{\sqrt[3]{(3x-5)^2}+\sqrt[3]{3x-5}+1} \right)=2[/tex]
Ta có hàm số liên tục khi và chỉ khi [tex]\lim_{x \rightarrow 2}f(x)=f(2) \Leftrightarrow a=2[/tex]