Bài 1:
[TEX]a)[/TEX] Theo giả thiết ta có:
[TEX]\left( {SAB} \right) \bot BC = \left( {ABC} \right) \cap \left( {SBC} \right)\\
\left( {SAB} \right) \cap \left( {ABC} \right) = AB\\
\left( {SAB} \right) \cap \left( {SBC} \right) = SB[/TEX]
Suy ra: [TEX]\left( {\widehat {\left( {SBC} \right),\left( {ABC} \right)}} \right) = \left( {\widehat {SA,SB}} \right) = \widehat {SBA},\left( {do:\widehat {SBA} < {{90}^0}} \right)[/TEX]
Trong [TEX]\Delta {SAB}[/TEX] có [TEX]\tan \widehat {SBA} = \dfrac{{SA}}{{AB}} = \dfrac{{a\sqrt 3 }}{a} = \sqrt 3 \Rightarrow \widehat {SBA} = {60^0}[/TEX]
Vậy [TEX]\left( {\widehat {\left( {SBC} \right),\left( {ABC} \right)}} \right) = {60^0}[/TEX]
[TEX]b)[/TEX] Theo giả thiết ta có: [TEX]\left\{ \begin{array}{l}
SA \bot \left( {ABD} \right)\\
AO \bot BD
\end{array} \right. \Rightarrow SO \bot BD \Rightarrow \left( {\widehat {\left( {SBD} \right),\left( {ABD} \right)}} \right) = \widehat {SOA}[/TEX]
Mà trong [TEX]\Delta SAO[/TEX] có [TEX]\tan \widehat {SOA} = \dfrac{{SA}}{{AO}} = \dfrac{{a\sqrt 3 }}{{\dfrac{{a\sqrt 2 }}{2}}} = \sqrt 6 \Rightarrow \widehat {SOA} = \arctan \sqrt 6 [/TEX]
Vậy [TEX]\left( {\widehat {\left( {SBD} \right),\left( {ABD} \right)}} \right) = \arctan \sqrt 6[/TEX]