bài này cm dài lắm, mình ghi các bước tóm tắt rồi bạn tự cm nhá
gọi 3 đcao là AM, BN, CE
[TEX]AH . AM = AE . AB = AN . AC[/TEX]
[TEX]\Rightarrow AH. AM = \frac{1}{2} . ( AE . AB + AN . AC) (1)[/TEX]
tương tự
[TEX]BN . BH = \frac{1}{2} . (BM . BC + BE . BA) (2)[/TEX]
[TEX]CH . CE = \frac{1}{2} . (CN . CA + CM . BC) (3)[/TEX]
[TEX](1) + (2) + (3) \Rightarrow AH. AM + BH . BN + CH .CE = \frac{1}{2} . (AB^2 + BC^2 + CA^2)[/TEX]
ta có
[TEX]\frac{AH}{AM} + \frac{BH}{BN} + \frac{CH}{CE} = \frac{AM - HM}{AM} + \frac{BN - HN}{BN} + \frac{CE - HE}{CE}[/TEX]
[TEX]= 3 - \bigg( \frac{HM}{AM} + \frac{HN}{BN} + \frac{HE}{CE} \bigg)[/TEX]
[TEX]= 3 - \bigg( \frac{S_{BHC}}{S_{ABC}} + \frac{S_{AHC}}{S_{ABC}} + \frac{S_{ABH}}{S_{ABC}} \bigg)[/TEX]
[TEX]=2[/TEX]
[TEX]\Rightarrow AB^2 + BC^2 + CA^2 = ( AH. AM + BH . BN + CH . CE) . \bigg(\frac{AH}{AM} + \frac{BH}{BN} + \frac{CH}{CE} \bigg) \geq (AH + BH + CH)^2[/TEX]