Toán GTNN

Nghĩa bá đạo

Học sinh chăm học
Thành viên
16 Tháng mười 2017
206
361
139
23
Hà Nội
xyz
a,b>0 t/m:[tex]a^3+b^3\leq ab[/tex].tìm min P=[tex]\frac{1}{1+a^2}+\frac{1}{1+b^2}[/tex]
Ta có [tex]\frac{(a+b)^{2}}{4}\geq ab\geq a^{3}+b^{3}\geq \frac{(a+b)(a^{2}+b^{2})}{2}\rightarrow \frac{a+b}{2}\geq a^{2}+b^{2}[/tex]....
Lại có [tex]ab\geq ab(a+b\rightarrow a+b\leq 1\rightarrow a^{2}+b^{2}\leq \frac{1}{2}[/tex]..
Nên[tex]\frac{1}{1+a^{2}}+\frac{1}{1+b^{2}}\geq \frac{4}{2+a^{2}+b^{2}}= \frac{8}{5}[/tex]....
 
Last edited:
Top Bottom