Có $\begin{cases} x^2 + y^2 \geqslant 2xy \\ x^2 + y^2 \geqslant -2xy \end{cases} \implies \begin{cases} xy \leqslant \dfrac13 \\ xy \geqslant -\dfrac{1}5 \end{cases}$
$\implies -\dfrac1{5} \leqslant xy \leqslant \dfrac{1}3$
$T = 7(x^4 + y^4) + 4x^2y^2$
$= 7(x^2 + y^2)^2 - 10x^2 y^2$
$= \dfrac{7}4 (1 + xy)^2 - 10 x^2y^2$
$= -\dfrac{33}4 x^2y^2 + \dfrac{7}2 xy + \dfrac{7}4$
$= -\dfrac{33}4 (xy - \dfrac{7}{33})^2 + \dfrac{70}{33}$
Có $-\dfrac{1}5 \leqslant xy \leqslant \dfrac{1}3$
$\iff -\dfrac{68}{165} \leqslant xy - \dfrac{7}{33} \geqslant \dfrac{4}33$
$\iff 0 \leqslant (xy - \dfrac{7}{33})^2 \leqslant \dfrac{4624}{27225}$
$\iff \dfrac{70}{33} \geqslant T \geqslant \dfrac{18}{25}$
Vậy $T$ lớn nhất khi $T = \dfrac{70}{33}$, khi $xy = \dfrac{7}{33} \iff x = \ldots$ và $y = \ldots$
$T$ nhỏ nhất khi $T = \dfrac{18}{25}$, khi $xy = -\dfrac{1}5 \iff x = \ldots$ và $y = \ldots$
$M + m = \dfrac{2344}{825}$