Bài 1: ĐKXĐ: [tex]x\geq 1[/tex] và x khác 3
[tex]A=\frac{x-3}{\sqrt{x-1}-\sqrt{2}}=\frac{(x-1)-2}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x-1}+\sqrt{2}\geq \sqrt{2}[/tex]
Dấu "=" xảy ra [tex]\Leftrightarrow \sqrt{x-1}=0\Leftrightarrow x=1 (TM)[/tex]
Vậy...
Bài 2;
Với [tex]n\geq 0[/tex] t luôn có:
[tex]\frac{\sqrt{n+1}-\sqrt{n}}{n+(n+1)}=\frac{\sqrt{n+1}-\sqrt{n}}{2n+1}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^{2}+4n+1}}< \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^{2}+4n+}}=\frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n(n+1)}}=\frac{1}{2}.\left ( \frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}} \right )[/tex]
Mặt khác [tex]A=\frac{\sqrt{2}-1}{1+2}+\frac{\sqrt{3}-\sqrt{2}}{2+3}+\frac{\sqrt{4}-\sqrt{3}}{3+4}+...+\frac{\sqrt{2025}-\sqrt{2024}}{2024+2025}[/tex]
Áp dụng bài toán trên ta được
[tex]A< \frac{1}{2}.\left ( \frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2024}}-\frac{1}{\sqrt{2025}} \right )=\frac{1}{2}.\left ( 1-\frac{1}{45} \right )=\frac{22}{45}[/tex] (đpcm)