[GTNN]tìm giá trị nhỏ nhất bằng BĐT cosi

I

ivory

cho 3 số dương a, b, c > 0 ab+bc+ca=3
Tìm min [TEX]P= \frac{a^3}{a + 2b} + \frac{b^3}{b + 2c} + \frac{c^3}{c + 2a}[/TEX]
[TEX]\frac{a^3}{a+2b}+\frac{a(a+2b)}{9}\ge \frac{2a^2}{3}[/TEX]
[TEX]VT\ge \frac{2(a^2+b^2+c^2)}{3}-\frac{(a+b+c)^2}{9}\ge \frac{a^2+b^2+c^2}{3}\ge \frac{ab+bc+ca}{3}=1[/TEX]
----------------------
[TEX]VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ca}\ge \frac{(a^2+b^2+c^2)^2}{(a+b+c)^2}\ge \frac{(a+b+c)^2}{9}\ge\frac{ab+bc+ac}{3}=1[/TEX]
 
Top Bottom