Toán GTLN

you only live once

Học sinh chăm học
Thành viên
11 Tháng một 2018
107
150
69
Hà Nội
thpt thường tín
a,b>0 t/m:[tex]a^4+b^4\leq a^2+b^2[/tex].tìm max P=ab(a+b+1)
ta có [tex]a^{4}+1\geq 2a^{2}[/tex]
[tex]b^{4}+1\geq 2b^{2}\Rightarrow a^{4}+b^{4}\geq 2(a^{2}+b^{2})-2[/tex]
suy ra [tex]2a^{2}+2b^{2}-2\leq a^{2}+b^{2}\Rightarrow a^{2}+b^{2}\leq 2[/tex]
nên [tex]P=ab(a+b+1)\leq \frac{a^{2}+b^{2}}{2}.(\sqrt{2(a^{2}+b^{2})}+1)=3[/tex]
dau = xay ra khi a=b=1
 
Top Bottom