Ta có ${b^2} = 3ab + 4{a^2} \Leftrightarrow 4.{\left( {\frac{a}{b}} \right)^2} + 3\frac{a}{b} - 1 = 0 \Leftrightarrow \frac{a}{b} = \frac{1}{4} \Leftrightarrow b = 4a$
$P = {\log _{\frac{b}{8}}}4a + \frac{3}{4}{\log _2}\frac{b}{4} = {\log _{\frac{b}{8}}}b + \frac{3}{4}\left( {{{\log }_2}b - {{\log }_2}4} \right) = \frac{1}{{{{\log }_b}\frac{b}{8}}} + \frac{3}{4}{\log _2}b - \frac{3}{2}$
$= \frac{1}{{1 - {{\log }_b}8}} + \frac{3}{4}{\log _2}b - \frac{3}{2} = \frac{1}{{1 - \frac{3}{{{{\log }_2}b}}}} + \frac{3}{4}{\log _2}b - \frac{3}{2} = \frac{{{{\log }_2}b}}{{{{\log }_2}b - 3}} + \frac{3}{4}{\log _2}b - \frac{3}{2}$
Đặt $t = {\log _2}b$ với $a \in \left[ {4;{2^{32}}} \right] \Rightarrow 16 \le b \le {2^{34}} \Rightarrow 4 \le {\log _2}b \le 34 \Rightarrow t \in \left[ {4;34} \right]$
Xét hàm $f\left( t \right) = \frac{t}{{t - 3}} + \frac{3}{4}t$ có $f'\left( t \right) = \frac{{3\left( {{t^2} - 6t + 5} \right)}}{{4{{\left( {t - 3} \right)}^2}}};\forall t \in \left[ {4;34} \right]$
$f'\left( t \right) = 0 \Leftrightarrow \left\{ \begin{array}{l}4 \le t \le 34\\{t^2} - 6t + 5 = 0\end{array} \right. \Leftrightarrow t = 5$
$f\left( 4 \right) = 7;f\left( 5 \right) = \frac{{25}}{4};f\left( {34} \right) = \frac{{1649}}{{62}}$
$\left\{ \begin{array}{l}\mathop {\max }\limits_{\left[ {4;34} \right]} f\left( t \right) = f\left( {34} \right) = \frac{{1649}}{{62}}\\\mathop {\min }\limits_{\left[ {4;34} \right]} f\left( x \right) = f\left( 5 \right) = \frac{{25}}{4}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}M = {P_{\max }} = \frac{{778}}{{31}}\\m = {P_{\min }} = \frac{{19}}{4}\end{array} \right. \Rightarrow T = M + m = \frac{{3701}}{{124}}.$