GTLN&NN: $y = cot^22x + tanx + cotx$

E

eye_smile

$y=cot^22x+tanx+cotx=(\dfrac{1-tan^2x}{2tanx})^2+tanx+\dfrac{1}{tanx}$

$=\dfrac{1}{4tan^2x}+\dfrac{tan^2x}{4}-\dfrac{1}{2}+\dfrac{1}{tanx}+tanx$

Đặt $\dfrac{1}{tanx}+tanx=t$

\Rightarrow $y=\dfrac{1}{4}(t^2-2)-\dfrac{1}{2}+t$

$=(\dfrac{1}{2}t+1)^2-2$

Do $x$ thuộc $[\dfrac{\pi}{12};\dfrac{\pi}{8}]$ nên $tanx$ đồng biến

\Rightarrow $2-\sqrt{3} \le tanx \le \sqrt{2}-1$

\Rightarrow ...
 
Top Bottom