[tex](x^{2}+1)^{2} + 4x\sqrt{2x^{2}+4}+7=0[/tex]
mong các cậu giúp mk
[tex](x^{2}+1)^{2} + 4x\sqrt{2x^{2}+4}+7=0\Leftrightarrow x^4+2x^2+1+4x\sqrt{2x^2+4}+7=0\Leftrightarrow 2x^2+4+4x\sqrt{2x^2+4}+4x^2+x^4-4x^2+4=0\Leftrightarrow (\sqrt{2x^2+4}+2x)^2+(x^2-2)^2=0[/tex]
Ta có: [tex](\sqrt{2x^2+4}+2x)^2+(x^2-2)^2\geq 0[/tex]
Dấu ''='' xảy ra khi:[tex]\left\{\begin{matrix} x^2=2 & & \\ \sqrt{2x^2+4}=-2x & & \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=+-\sqrt{2} & & \\ \left\{\begin{matrix} x\leq 0 & & \\ 4=2x^2 & & \end{matrix}\right. & & \end{matrix}\right.\Rightarrow x=-\sqrt{2}[/tex]