a) [tex]\sqrt{x^{2}-4x+3} + 2\sqrt{x+3} = 2\sqrt{x-3}+\sqrt{x^{2}+2x-3}[/tex]
b) [tex]\left\{\begin{matrix} x^{2}+y^2+x+y=8 \\ xy(x+1)(y+1)=12 \end{matrix}\right.[/tex]
a) ĐKXĐ: [tex]x\geq 3[/tex]
[tex]\sqrt{x^{2}-4x+3} + 2\sqrt{x+3} = 2\sqrt{x-3}+\sqrt{x^{2}+2x-3}\\\Leftrightarrow \sqrt{(x-3)(x-1)}+2\sqrt{x+3}=2\sqrt{x-3}+\sqrt{(x-1)(x+3)}\\\Leftrightarrow \sqrt{x-1}\left ( \sqrt{x-3}-\sqrt{x+3} \right )-2\left ( \sqrt{x-3}-\sqrt{x+3} \right )=0\\\Leftrightarrow \left ( \sqrt{x-3}-\sqrt{x+3} \right )\left ( \sqrt{x-1}-2 \right )=0\\\Leftrightarrow ...[/tex]
b) [tex]\left\{\begin{matrix} x^{2}+y^2+x+y=8 \\ xy(x+1)(y+1)=12 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x(x+1)+y(y+1)=8\\x(x+1)y(y+1)=12 \end{matrix}\right.[/tex]
Đặt [tex]x(x+1)=a;y(y+1)=b[/tex]
HPT đã cho trở thành [tex]\left\{\begin{matrix} a+b=8\\ab=12 \end{matrix}\right.[/tex]
Bạn tự giải nốt, tìm $a,b$ rồi tìm được $x,y$