1. BEDC nội tiếp vì [tex]\widehat{BEC}=\widehat{BDC}=90^o[/tex]
AEHD nội tiếp vì [tex]\widehat{AEH}=\widehat{ADH}=90^o[/tex]
2. BEDC nội tiếp [tex]\Rightarrow \widehat{AED}=\widehat{ABC}[/tex]
Mà [tex]\widehat{ACB}=\widehat{BAx} \Rightarrow \widehat{BAx}=\widehat{AED} \Rightarrow xy // DE \Rightarrow AO \perp DE[/tex]
3. Xét tam giác MBN và MAB:
[tex]\left.\begin{matrix} \widehat{MBN}=\widehat{MAB}(=\widehat{MAC})\\ \widehat{BMN}=\widehat{AMB} \end{matrix}\right\}\Rightarrow \Delta MBN \sim \Delta MAB(g.g)\Rightarrow \frac{MB}{MN}=\frac{MA}{MB}\Rightarrow MB^2=MA.MN[/tex]