giup voi

B

braga

A=|x-1|+|x-2|+|x-3|+....+|x-2010|

[TEX]A=|x-1|+|x-2|+|x-3|+....+|x-2010| \\ \Leftrightarrow A=|x-1|+|x-2|+....+|x-1004|+|x-1005|+|1006-x|+.....+|2010-x|[/TEX]

Ta có:
[TEX]|x-1| \geq x-1 \\ |2010-x| \geq 2010-x \\ |x-2| \geq x-2 \\ |2009-x|\geq 2009-x \\ ..... \\ |x-1004| \geq x-1004 \\ |1006-x| \geq 1006-x \\ |x-2005| \geq 0[/TEX]

[TEX]\Rightarrow A \geq 1009522[/TEX]

Dấu "=" xảy ra [TEX]\Leftrightarrow \{x-1004 \geq 0 \\ 2010-x \geq 0[/TEX] [TEX]\Leftrightarrow \{x \geq 1004 \\ x \leq 2010[/TEX]

Vậy [TEX]MinA=1009522 \Leftrightarrow 1004 \leq x \leq 2010[/TEX]
 
Last edited by a moderator:
Top Bottom