1, $3 sin x - \sqrt[]{3} cos 3x = 4 sin^3 x + 2$
<=> $3 sin x - 4 sin^3 x - \sqrt[]{3} cos 3x = 2$
<=> $sin 3x - \sqrt[]{3} cos 3x = 2$
<=> $2 sin (3x - \frac{\pi}{3}) = 2$
<=> $sin (3x - \frac{\pi}{3}) = 1$
<=> $3x - \frac{\pi}{3} = \frac{\pi}{3} + k 2 \pi$
<=> $x = \frac{5\pi}{12} + k \frac{2\pi}{3}$
2, $2 cos x cos 4x - \sqrt[]{3} sin 5x = 3 cos 3x$
<=> $cos 5x + cos 3x - \sqrt[]{3} sin 5x = 3 cos 3x$
<=> $cos 5x - \sqrt[]{3} sin 5x = 2 cos 3x$
<=> $2 cos (5x + \frac{\pi}{3}) = 2 cos 3x$
<=> $5x + \frac{\pi}{3} = 3x + k 2 \pi$ hoặc $5x + \frac{\pi}{3} = - 3x + k 2 \pi$
<=> $x = - \frac{\pi}{6} + k \pi$ hoặc $x = - \frac{\pi}{24} + k \frac{\pi}{4}$