tìm giá trị nhỏ nhất |x - 1| + |4 + x| :-SS:-SS:-SS:-SS:-SS:-SS:-SS:-SS:-SS:-SS:-SS:-SS
B braga 19 Tháng chín 2011 #1 [TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn. tìm giá trị nhỏ nhất |x - 1| + |4 + x| :-SS:-SS:-SS:-SS:-SS:-SS:-SS:-SS:-SS:-SS:-SS:-SS
[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn. tìm giá trị nhỏ nhất |x - 1| + |4 + x| :-SS:-SS:-SS:-SS:-SS:-SS:-SS:-SS:-SS:-SS:-SS:-SS
H harrypham 8 Tháng một 2012 #2 Sử dụng bất đẳng thức [TEX]|a|+|b| \ge |a+b|[/TEX] ta có [TEX]|x-1|+|4+x|=|1-x|+|4+x| \ge |1-x+4+x|=5[/TEX]. Đẳng thực xảy ra khi [TEX](1-x)(4+x) \ge 0 \Rightarrow -4 \le x \le 1[/TEX]. Vậy GTNN của [TEX]|x-1|+|4+x|[/TEX] là [TEX]\fbox{5}[/TEX] khi [TEX] -4 \le x \le 1[/TEX].
Sử dụng bất đẳng thức [TEX]|a|+|b| \ge |a+b|[/TEX] ta có [TEX]|x-1|+|4+x|=|1-x|+|4+x| \ge |1-x+4+x|=5[/TEX]. Đẳng thực xảy ra khi [TEX](1-x)(4+x) \ge 0 \Rightarrow -4 \le x \le 1[/TEX]. Vậy GTNN của [TEX]|x-1|+|4+x|[/TEX] là [TEX]\fbox{5}[/TEX] khi [TEX] -4 \le x \le 1[/TEX].