5. [imath]5a^2+9b^2+2a-12ab+1=0[/imath]
[imath]4a^2-12ab+9b^2+a^2+2a+1=0[/imath]
[imath](2a)^2-2.2a.3b+(3b)^2+a^2+2a+1=0[/imath]
[imath](2a-3b)^2+(a+1)^2=0[/imath]
Vì [imath](2a-3b)^2 \geq 0, \ \forall a,b \in \mathbb{R}[/imath] và [imath](a+1)^2 \geq 0, \ \forall a \in \mathbb{R}[/imath]
Nên [imath](2a-3b)^2+(a+1)^2=0[/imath] khi và chỉ khi [imath]
\left\{\begin{matrix}
2a-3b = 0 \\
a+1 = 0
\end{matrix}\right. \\
\Leftrightarrow \left\{\begin{matrix}
b = - \dfrac{2}{3} \\ \\
a = -1
\end{matrix}\right. \\
[/imath]
[imath]A= 12a^2+ \dfrac{2}{a+2b} \\ \\
= 12(-1)^2+ \dfrac{2}{-1+2 \left ( - \dfrac{2}{3} \right )} \\
=\dfrac{78}{7}[/imath]