[tex](1-1)^{2n}=C^k_{2n}.1^k.(-1)^{2n-k}\\\Leftrightarrow C^0_{2n}-C^1_{2n}+C^2_{2n}-...-C^{2n-1}_{2n}+C^{2n}_{2n}=0\\\Leftrightarrow C^0_{2n}+ C^2_{2n}+...+ C^{2n}_{2n}= C^1_{2n}+ C^3_{2n}+...+ C^{2n-1}_{2n}\\\Leftrightarrow 2(C^1_{2n}+ C^3_{2n}+...+ C^{2n-1}_{2n})=C^0_{2n}+C^1_{2n}+C^2_{2n}+...+C^{2n-1}_{2n}+C^{2n}_{2n}\\\Leftrightarrow 2(C^1_{2n}+ C^3_{2n}+...+ C^{2n-1}_{2n})=(1+1)^{2n}\\\Leftrightarrow 2(C^1_{2n}+ C^3_{2n}+...+ C^{2n-1}_{2n})=2^{2n}\\\Leftrightarrow C^1_{2n}+ C^3_{2n}+...+ C^{2n-1}_{2n}=2^{2n-1}[/tex]
Theo đề có : $2^{2n-1}=2^{23} \Leftrightarrow n=12$